Distributed Consensus

e Part 1: Consensus
e Part 2: Paxos

e Part 3: RAFT

University of

Massachusetts | Compsci 677: Distributed and OS Lec. 19
Ambherst

n
Three-Phase Commit
Vote-request
INIT Vote-abort INIT
Commit @e’%) quest
Vote-request ¥ Vote-commit ¥V
WAIT READY
Vote-abort Vote-commit Global-abort Prepare-commit
Global-abort Prepare-commit ACK Ready-commit
(_ABORT) LPRECOMMI‘D ABORT) LPRECOMMHj
Ready-commit Global-commit
y Global-commit v ACK
COMMIT COMMIT
@ (b)
Two phase commit: problem if coordinator crashes (processes block)
Three phase commit: variant of 2PC that avoids blocking
University of
Lec. 18

Massachusetts | Compsci 677: Distributed and OS
Amherst

Replication for Fault Tolerance

* Basic idea: use replicas for the server and data

* Technique 1: split incoming requests among replicas
* If one replica fails, other replicas take over its load

» Suitable for crash fault tolerance (each replica produces correct results when it is us).

* Technique 2: send each request to all replicas
* Replicas vote on their results and take majority result
¢ Suitable for BFT (a replica can produce wrong results)
e 2PC, 3PC, Paxos are techniques
University of

Massachusetts | Compsci 677: Distributed and OS
Amherst

Lec. 18

3

Consensus

* Consensus: get a group of processes to agree on something
* Consensus vs Byzantine Agreement
* Achieve reliability in presence of faulty processes

* requires processes to agree on data value needed for computation

¢ Examples: whether to commit a transaction, agree on identity of a leader, atomic broadcasts, distributed locks
* 4 Properties of a consensus protocol with fail-stop failures

e Agreement: every correct process agrees on same value

e Termination: every correct process decides some value

¢ Validity: If all propose v, all correct processes decides v

¢ Integrity: Every correct process decided at most one value and if it decides v, someone must have
proposed v.

University of
Massachusetts | Compsci 677: Distributed and OS
Ambherst

Lec. 19

2PC, 3PC Problems

* Both have problems in presence of failures
» Safety is ensured but liveness is not
e 2PC
* must wait for all nodes and coordinator to be up
¢ all nodes must vote
* coordinator must be up
* 3PC
* handles coordinator failure
¢ but network partitions are still an issue
¢ Paxos : how to reach consensus in distributed systems that can tolerate non-malicious failures?
* majority rather than all nodes participate
University of

Massachusetts | Compsci 677: Distributed and OS Lec. 19 5
Amherst

Paxos: fault-tolerant agreement

* Paxos lets nodes agree on same value despite:
* node failures, network failures and delays
¢ Use cases:
* Nodes agree X is primary (or leader)
* Nodes agree Y is last operation (order operations)
* General approach
* One (or more) nodes decides to be leader (aka proposer)
* |Leader proposes a value and solicits acceptance from others
¢ Leader announces result or tries again
* Proposed independently by Lamport and Liskov
* Widely used in real systems (ZooKeeper, Chubby, Spanner)
University of

Massachusetts | Compsci 677: Distributed and OS Lec. 19 6
Amherst

Paxos Requirements

o Safety (Correctness)
¢ All nodes agree on the same value
¢ Agreed value X was proposed by some node

* Liveness (fault-tolerance)
¢ [f less than N/2 nodes fail, remaining nodes will eventually reach agreement
* Liveness not guaranteed if steady stream of failures

* Why is agreement hard?
* Network partitions
* Leader crashes during solicitation or after deciding but before announcing results,
* New leader proposes different value from already decided value,
* More than one node becomes leader simultaneously....

University of

Massachusetts | Compsci 677: Distributed and OS
Amherst

Lec. 19

7

Paxos Setup

» Entities: Proposer (leader), acceptor, learner

¢ Leader proposes value, solicits acceptance from acceptors

* Acceptors are nodes that want to agree; announce chosen value to learners
* Proposals are ordered by proposal #

* node can choose any high number to try to get proposal accepted

* An acceptor can accept multiple proposals

e If prop with value v chosen, all higher proposals have value v

¢ Each node maintains

* n_a, v_a: highest proposal # and accepted value

* n_h: highest proposal # seen so far

* my_n: my proposal # in current Paxos

University of

Massachusetts | Compsci 677: Distributed and OS
Ambherst

Lec. 19

Paxos operation: 3 phase protocol

e Phase 1 (Prepare phase)
* Anode decides to be a leader and propose
e Leader chooses my_n >n_h
* Leader sends <prepare, my_n> to all nodes
¢ Upon receiving <prepare, n> at acceptor
e Ifn<n_h
e reply <prepare-reject> /* already seen higher # proposal */
* Else
enh=n /* will not accept prop lower than n */
* reply <prepare-ok, n_a, v_a> /* send back previous prop, value/
. /* can be null, if first */
University of

Massachusetts | Compsci 677: Distributed and OS
Amherst

Lec. 19

9

Paxos operation

¢ Phase 2 (accept phase)
« If leader gets prepare-ok from majority
¢ V = non-empty value from highest n_a received
e |f V = null, leader can pick any V
¢ Send <accept, my_n, V> to all nodes
« [f leader fails to get majority prepare-ok
e delay and restart Paxos
¢ Upon receiving <accept, n, V>
e Ifn<n_h
¢ reply with <accept-reject>
* else
e n_a=n;v_a=V;n_h=h; reply <accept-ok>
University of

Massachusetts | Compsci 677: Distributed and OS
Amherst

Lec. 19

10

Paxos Operation

¢ Phase 3 (decide)
¢ If leader gets accept-ok from majority
¢ Send <decide, v_a> to all learners
« If leader fails to get accept-ok from a majority

¢ Delay and restart Paxos

¢ Properties
¢ P1: any proposal number is unique

¢ P2: any two set of acceptors have at least one node in common

¢ P3: value sent in phase 2 is value of highest numbered proposal received in responses in phase 1

University of
Massachusetts | Compsci 677: Distributed and OS Lec. 19 1
Amherst
nh=N0:0 nh=N1:0 nh=N2:0
na =va = null na = va = null na =va = null
Prepare,N1:1 Prepare,N1:1
nh=N1:1 Na= nh: N1:1
na = null va=nu ok, na na = null
va = null =va= va = null
Accept,N1:1,va tN1:1vall
nh=N1:1 nh=N1:1
na=N1:1 \ /0/ na=N1:1
va=vall k k va =vall
NO N1 N2
University of
Massachusetts | Compsci 677: Distributed and OS Lec. 19 12

Ambherst

Issues

Network partitions:

¢ With one partition, will have majority on one side and can come to agreement (if nobody fails)

Timeouts

¢ A node has max timeout for each message

¢ Upon timeout, declare itself as leader and restart Paxos

Two leaders

¢ Either one leader is not able to decide (does not receive majority accept-oks since nodes see
higher proposal from other leader) OR

¢ one leader causes the other to use it value

Leader failures: same as two leaders or timeout occurs

University of
Massachusetts | Compsci 677: Distributed and OS Lec. 19 13
Amherst

Part 3: Raft Consensus Protocol

¢ Paxos is hard to understand (single vs multi-paxos)

Raft - understandable consensus protocol

e State Machine Replication (SMR)

¢ Implemented as a replicated log

¢ Each server stores a log of commands, executes in order

¢ Incoming requests —> replicate into logs of servers

¢ Each server executed request log in order: stays consistent

Raft: first elect a leader

¢ Leader sends requests (log entries) to followers
* If majority receive entry: safe to apply -> commit

« If entry committed, all entries preceding it are committed
University of

Massachusetts | Compsci 677: Distributed and OS Lec. 19 14
Ambherst

Log replication

e Servers maintain log of commands: order to perform ops
* Replicated log: replicated state machine (SMR)

* all servers (replicas) execute commands in log order

CEEEERE
N EEEERRE.

Hash Table ~y @2@ fy qu 2 &
X 1 e = R
y 2 \E%) \Hmzﬁe\

Log

z 6 X3 i<—2 x¢1|z46

Log’ L
\)«—3\)«—2 x«—ﬂzJ—G\ \x<—3 ye2\x<—1 246\

Replicated log

Single server log

University of Fig courtesy: D. Ongaro

Massachusetts | Compsci 677: Distributed and OS Lec. 19 15
Amherst

Consensus Approaches

* Leaderless (symmetric)
» Client can contact any server
e Leader-based (asymmetric)
* One server is leader and other servers follow the leader

¢ Clients contact leader

* RAFT is a leader-based consensus protocol

* Two aspects: leader changes and normal operation

University of
Massachusetts | Compsci 677: Distributed and OS Lec. 19 16
Amherst

RAFT Overview

* Leader election
» Select one server to serve as a RAFT leader
* detect leader crash, elect new leader
¢ Normal operation
* Perform log replication
* Leader receives client commands, append to log
¢ Leader then replicates log to followers
» Detect and overwrite consistencies in log
e Safety
* Committed log entires are not impacted by leader crash

¢ Almost one leader
University of

Massachusetts | Compsci 677: Distributed and OS Lec. 19
Amherst

Te rms Term 1 Term 2 Tﬁ 3 Term 4 Term 5

) 1 1 1 1 >
\ / | \) e
Elections Split Vote Normal Operation
* Time is divided into terms

 Election Fig courtesy: D. Ongaro
* Normal operation with elected leader
* New term starts upon leader failure
¢ At most one leader per term
* Some terms may have no leader (failed term)
* All servers maintain current term value
¢ At any time, each server is either:
« leader: receives all client requests and log replication
« follower: passively follows leader
« candidate: participates in leader election
University of

Massachusetts | Compsci 677: Distributed and OS Lec. 19
Amherst

RAFT Election

¢ Election timeout: no RPCs received for a while ~100-500ms

¢ Increment current term and become candidate
* Vote for self (1)
¢ Send election (RequestVote RPC) message to followers
¢ Receive vote from majority: become leader
¢ send heartbeat message (AppendEntries RPC)

* Receive RPC from leader: become follower again

¢ Failed election: no majority votes within election timeout

¢ Increment term, start new election

* Safety: at most one server wins; servers vote once per term

¢ Liveness: someone eventually wins

¢ choose random election timeouts; one server times out/wins

University of
Massachusetts | Compsci 677: Distributed and OS Lec. 19 19
Amherst
* Leader receives client commands and appends to log
» Send AppendEntry RPC to all followers
* Once entry safely committed to log
* execute command and return result to client
* Followers catch up in background
* Notify followers of committees entries in subsequent RPCs
* Followers apply committed commands to their state m/c
* Log entry: index, term, command (stored on disk)
index -> 1 2 3 4 5 6 7 8
term - 1 1 1 2 3 3 3 3
command |X¢=3|y<-2|x<«-1|2<6[z<0 [y« 9[y<1[x<4
University of Fig courtesy: D. Ongaro
Lec. 19 20

Massachusetts | Compsci 677: Distributed and OS
Ambherst

Log consistency

¢ Consistency check: include index, term of prev entry

« follower must contain matching entry: reject otherwise

T[1]1]2] 3
leader x<—3|y<—2|x<—1 ‘z<—6| ;—()‘Q
T 1 [t

* Log entries can become inconsistent due to leader failure

AppendEntries fails:
mismatch

log index 12 3 4 5 6 7 8 9 10 11 12
leader for
term 8

[T+]« [« [s[sTeTels]

possible
followers

6 6 |!
Gil v I -k Extraneous

OCODTllel«) ya Eres

University of

Fig courtesy: D. Ongaro

Fig courtesy: D. Ongaro

Massachusetts | Compsci 677: Distributed and OS Lec. 19 21
Ambherst
e |eader tracks nextindex for each follower
 If AppendEntry check fails, decrement and try again
* rewind to find match; follower deletes all subsequent entries
nextindex
log index 1 2 3 456 7 8 9nadt 1
1 L
leaderforterm?7 |1 [1]1|4|4[5[5]6 |6 6/
'aVavaYaYaYa'
@ [1]1]1]4]
followers FAVAVAVYAVAVYAYAS
o [1]{1]1]2]2]2]3]|3|3]3]3]
Fig courtesy: D. Ongaro
University of) o
Massachusetts | Compsci 677: Distributed and OS Lec. 19 2

Ambherst

Recovery

e Techniques thus far allow failure handling

e Recovery: operations that must be performed after a failure to recover to a
correct state

e Techniques:
— Checkpointing:
* Periodically checkpoint state

* Upon a crash roll back to a previous checkpoint with a consistent state

University of
Massachusetts | Compsci 677: Distributed and OS Lec. 19 23
Amherst

Independent Checkpointing

Initial state Checkpoint

P1

WA=

Time —»

e Each processes periodically checkpoints independently of other processes
e Upon a failure, work backwards to locate a consistent cut

* Problem: if most recent checkpoints form inconsistenct cut, will need to keep rolling back until a
consistent cut is found

» Cascading rollbacks can lead to a domino effect.

University of
Massachusetts | Compsci 677: Distributed and OS Lec. 19 2
Ambherst

Coordinated Checkpointing

* Take a distributed snapshot [discussed in Lec 13]

* Upon a failure, roll back to the latest snapshot

— All process restart from the latest snapshot

University of
Massachusetts | Compsci 677: Distributed and OS Lec. 19
Amherst

25

Logging

* Logging : a common approach to handle failures

* Log requests / responses received by system on separate storage device /
file (stable storage)

* Used in databases, filesystems, ...
* Failure of a node
e Some requests may be lost

* Replay log to “roll forward” system state

University of
Massachusetts | Compsci 677: Distributed and OS Lec. 19
Ambherst

26

Message Logging

¢ Checkpointing is expensive
— All processes restart from previous consistent cut
— Taking a snapshot is expensive

— Infrequent snapshots => all computations after previous snapshot will need to be redone
[wasteful]

e Combine checkpointing (expensive) with message logging (cheap)
— Take infrequent checkpoints
— Log all messages between checkpoints to local stable storage
— To recover: simply replay messages from previous checkpoint
¢ Avoids recomputations from previous checkpoint

University of
Massachusetts | Compsci 677: Distributed and OS
Amherst

Lec. 19

27

